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Abstract

The quantum phenomenon of probability backflow is explored. This remarkable effect
arises when considering the motion of a free particle in one dimension. For a state
consisting only of positive momenta, it is possible for probability to flow in the opposite
direction to the particle’s momentum. A comprehensive review of the literature and
some new material is presented on the backflow effect, a subject which has implications
for the foundations of quantum theory.
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1 Introduction

The backflow effect is a remarkable yet relatively unknown phenomenon that occurs
in quantum mechanics. It is the source of the following puzzle: For a non-relativistic
free particle described by a wave function localized in x < 0 and containing only pos-
itive momenta, the probability of remaining in x < 0 can actually increase with time.
Probability flows “backwards” in opposition to momentum in certain regions of the
x-axis. A striking illustration of backflow is shown in Fig.(1.1).

Figure 1.1: Plot of the probability P (t) for remaining in x < 0 as a function of time.
There is a clear increase in probability during the time interval [−1, 1] [1].

Allcock [2] was the first to identify this effect within the context of the time-of-arrival
problem in quantum mechanics. He found that the current J(x, t), can be negative at
the origin even for states made up entirely of positive momentum. The occurrence of
backflow meant the use of J(x, t) as an ideal arrival time distribution was thus invalid.

Surprisingly, it took over twenty years for a more detailed account of the proper-
ties of backflow to emerge. Bracken and Melloy [3] showed that although a period of
backflow can be arbitrarily long, the increase in probability for remaining in x < 0 can
not exceed a certain amount. That is to say, there exists a limit on the total amount
of backflow a state can display. This upper bound is given by a dimensionless number
cbm, computed numerically to be approximately 0.04. The quantity cbm is independent
not only of the mass of the particle but the duration of the time interval over which
backflow occurs. It is also independent from ~ and so one may ask how this strictly
quantum effect ceases to exist in classical systems. It is often assumed that letting
~→ 0 restores the classical limit.
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This has led cbm to be dubbed a “new quantum number”. However, there are
situations where the maximum amount of backflow a state can display becomes depen-
dent on certain physical parameters. Yearsley et al [1] found that the more realistic
measurement model of quasiprojectors recovers the naive classical limit and backflow
diminishes when ~ → 0. Furthermore in the relativistic case for particles governed by
the Dirac equation [4], cbm has an added dependency on the speed of light c. It has
been speculated that particles might literally for some time intervals masquerade as
antiparticles during periods of backflow [5]. Equally astounding is that backflow can
occur in opposition to a constant force [6].

The numerical computation of cbm has been carried out by a number of authors,
most notably by Eveson et al [7], who improved the accuracy to 0.038452. The method
they employ is similar to that of Bracken and Melloy, who convert the constant cbm
into the supremum of the spectrum of an integral flux operator in momentum space.
A more computationally efficient way of finding cbm was put forward by Penz et al [8].
Their approach relied on decomposing the integral operator into a sum of Fourier trans-
formed multiplication operators and then applying the fast Fourier transform. Using
linear algebra and functional analysis, they also demonstrated that the flux operator is
linear bounded, self-adjoint and not compact.

Another significant result by Penz et al [8] was the numerical calculation of the
backflow maximising state and its current. This state produces the greatest amount
of backflow but to date, the analytic form is unknown and a vital part of our under-
standing is missing. Yearsley et al [1] proposed two candidate analytic expressions that
appeared to match the numerical solutions of Penz et al. Closer inspection revealed that
these states did not exhibit the maximum amount of backflow, however one candidate
state displayed around 70% of the theoretical maximum, significantly larger than any
previous analytic state discovered.

An interesting set of questions concerns the kind of states which produce backflow
and the amount they display in comparison to the backflow maximising state. One
can then begin to address the problem of measuring the effect since it has never been
observed experimentally. Negative values of the Wigner function of a state give a good
indication of non-classical behaviour. However, this is not sufficient and calculations of
the probability current and flux are required to demonstrate the occurrence of backflow.
A single Gaussian wavepacket will never exhibit backflow but a superposition of two
Gaussians will [1]. This is promising as a state of this kind is experimentally viable,
but as it only displays around 16% of the theoretical maximum, measuring the effect
may prove challenging.

There exist both direct and indirect methods to experimentally realise backflow but
this is an area that requires further work. Difficulties arise when considering how to
measure the small fraction of backflowing probability. At asymptotic distances from
the source or interaction region, the effect of backflow is negligible [9]. This is why
the use of time of flight techniques in experiments with atomic and molecular beams is
not problematic. If the detectors were moved closer to the interaction region however,
non-classical results may become more apparent. Already it has been shown that the
backflow effect has surprising implications when considering the concept of perfect ab-
sorption in quantum mechanics. During a period of backflow it is possible for a perfect
absorber to emit probability [10]. Backflow has also highlighted inconsistencies between
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two potential arrival time densities [11].
Recently, backflow has been shown to occur for an electron in a magnetic field [12].

If the wavepacket is made up entirely of states with negative values of the angular
momentum quantum number, then there are regions of space where the effective an-
gular momentum is positive and the probability current J is negative. These regions
of backflow can be sustained indefinitely for certain wave functions due to the unusual
relationship between energy and the angular momentum quantum number.

A period of backflow can be arbitrarily long but ultimately, there is a temporal con-
straint on the effect specified through the dimensionless quantity cbm. Naturally one
may then ask about the spatial extent of backflow. Does there exist a restriction on
the regions of the x-axis over which the effect takes place? The work of Eveson et al [7]
derived a “kinematical” quantum inequality for the current density demonstrating that
backflow is restricted in space. Furthermore, it is possible to give a quantitative measure
of the backflowing fraction of the x-axis. This was achieved by Berry [5], who focused on
the distribution and evolution of the regions of the x-axis over which backflow occurs.
His results indicate that a region of backflow is dependent on the distribution of the
component momenta in the wavepacket. In superpositions of many-waves, the region
of backflow is much larger when its Fourier components are strongly correlated than if
they were randomly distributed, and the state exhibits “strong backflow”. This effect,
(which is closely related to another quantum phenomenon, superoscillations), is short
lived however, as evolution of the state according to the Schrödinger equation causes
the destruction of the phases responsible for strong backflow. The region of backflow
shrinks and becomes comparable in size to that of a random superposition.

To illustrate the backflow effect, Bracken and Melloy [3] presented a simple descrip-
tion using negative probability, a topic many regard as unsatisfactory. They noted that
a flow of positive probability in the negative x-direction is mathematically equivalent
to a flow of negative probability in the positive x-direction. Backflow is thus explained
by a (net) flow of negative probability in the direction of the particle’s momentum.
This interpretation is controversial, and backflow is best understood as arising from
interference between different parts of the wavepacket. In open system models these
interference effects are suppressed by the presence of an environment [13] and back-
flow ceases to occur. The process of decoherence is a central idea in the emergence of
classical behaviour and sheds light on the disappearance of backflow in the standard
approach to the classical limit.

Within the framework of Bohmian mechanics an alternative understanding of the
backflow effect emerges. Here, the point particle and the matter wave are both regarded
as real and distinct physical entities. A particle is not truly free but follows a well de-
fined trajectory, its motion governed by an associated pilot wave. These trajectories
do not intersect each other, so only a single trajectory contributes to the probability
current J(x, t) at each point in spacetime. When the current at the origin, J(0, t) > 0, a
particle is crossing x = 0 only from the left, whereas any time interval when J(0, t) < 0,
corresponds to crossing x = 0 from the right. Backflow can occur in several disjoint
time intervals and so one must accept the counterintuitive property that a free particle
can in fact turn back on itself. This does not seem wholly settling, however, in Bohm’s
theory a particle is always guided by the wave function which itself is susceptible to
temporal change in the backflow regions [10].
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Probability backflow has also been studied within the decoherent histories approach
to quantum mechanics [14, 15]. This formulation applies to genuinely closed quantum
systems with the objective being to assign probabilities to coarse grained histories of
a quantum system. A history is represented by a time-ordered string of projections
together with an initial state. Probabilities can only be assigned if the histories satisfy
certain consistency conditions, in particular sets of histories must satisfy the condition
of decoherence. For states that display significant backflow, there cannot be decoher-
ence and it is not possible to assign probabilities. This insight is useful in the context
of the arrival time problem [16].

Time observables have a much debated history within quantum theory. Unlike other
observables such as the position or momentum of a particle, time cannot be represented
by a self-adjoint operator. Instead, it enters the Schrödinger equation as an external
parameter t. Probability backflow together with the Zeno effect [17], provide a funda-
mental limitation on the accuracy with which we can define time observables. A better
understanding of the backflow effect could give useful insight into the definition of time
observables, an issue central to the foundations of quantum theory.

Despite its discovery over forty years ago, there is only a small amount of literature
on the subject of backflow. There are still many open questions concerning the ex-
perimental observation of the effect and the analytic form of the backflow maximising
state. The purpose of this report is to provide a comprehensive review of the backflow
effect. It is a fascinating subject that encapsulates the weird and wonderful nature of
quantum mechanics and for that reason alone, it deserves further study.
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2 The Backflow Effect

2.1 Backflow and the Wigner Function

We consider a free non-relativistic particle described by the normalised wave function
ψ(x, t). The wave packet is localised in x < 0 and consists entirely of positive momenta.
The motion is confined to the x-axis (although the arguments can be extended to three
dimensions, this would unnecessarily complicate matters).

In terms of ψ, the probability density ρ(x, t) and probability current J(x, t) are
defined by

ρ(x, t) = ψ∗(x, t)ψ(x, t) (2.1)

J(x, t) = − i~
2m

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ∂ψ∗(x, t)

∂x
ψ(x, t)

)
(2.2)

and satisfy the continuity equation,

∂ρ(x, t)

∂t
+
∂J(x, t)

∂x
= 0 (2.3)

The probability for the particle to be in the spatial region [−∞, 0] at time t is

P (t) =

∫ 0

−∞
dx ρ(x, t) (2.4)

and provided that J(−∞, t) = 0, it follows that

dP (t)

dt
= −J(0, t) (2.5)

Classically, because J(0, t) ≥ 0 for all t > 0, Eq.(2.5) expresses the result expected
intuitively; the probability that the particle is in the region [−∞, 0] decreases mono-
tonically with time. However, quantum mechanics permits J(0, t) < 0 and so P (t) can
actually increase with time. This illustrates the backflow effect where probability can
flow in the opposite direction to a particle’s momentum. The effect can last for an
arbitrarily long period of time but there is a limit on how much probability can flow
“backwards”. We will discuss the characteristics of backflow later on in the chapter.

The negativity of the current is closely related to the Wigner function and it is this
relationship that we will now develop to shed some light on this peculiar quantum phe-
nomenon. We consider the amount of probability flux F (t1, t2) crossing x = 0 during
the time interval [t1, t2], defined by

F (t1, t2) =

∫ 0

−∞
dx ρ(x, t1)−

∫ 0

−∞
dx ρ(x, t2)
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=

∫ t2

t1

dt J(0, t) (2.6)

where the current can be written in terms of the Wigner function [18], W (x, p, t) at
time t,

J(0, t) =

∫
dp

p

m
W (0, p, t) (2.7)

For a free particle, the Wigner function evolves according to,

W (x, p, t) = W (x− pt

m
, p, 0) (2.8)

If we take a time interval [0, T ] over which backflow occurs, the flux can now be expressed
as

F (0, T ) =

∫ T

0

dt

∫
dp

p

m
W (−pt/m, p, 0) (2.9)

The Wigner function can be negative due to the effects of quantum interference
between different portions of the state. It is this negativity that is a necessary condition
for the negativity of the flux (and current [14]). It is not a sufficient condition however,
since the integral in Eq.(2.9) may give a positive expression, even for negative values of
W .

Feynman [19] argued in favour of negative probabilities as a way to interpret negative
values of the Wigner function. Bracken and Melloy [3] then developed this idea to
provide a simple picture of backflow. For wave functions where W vanishes for p < 0,
the current is

J(x, t) =

∫ ∞
0

dp
p

m
W (x− pt/m, p, 0) (2.10)

From this expression we see that all the probability flows in the direction of the particle’s
momentum. However, not all the probability is positive. A flow of positive probability
in the negative x-direction is mathematically equivalent to a flow of negative probability
in the positive x-direction. They thus conclude that backflow is explained by a (net)
flow of negative probability in the direction of the particle’s momentum.

Negative probabilities are a contentious topic that many regard as unsatisfactory.
No one can dispute their use as a mathematical tool but how does one interpret them
physically? Quantum mechanics has a long history of revealing aspects of nature that
go against our classical intuition and backflow is certainly one of them. Regardless of
their interpretation, negative probabilities do provide a simple understanding of this
quantum effect.

Note that when considering open systems models, evolution in the presence of an
environment can cause the Wigner function to become strictly positive after a short
time [20]. As a result, the flux will be positive as can be seen from Eq.(2.9). Backflow
is destroyed by the presence of an environment. This is expected since it is clearly a
non-classical effect which must vanish in the appropriate classical limit. This and other
aspects of the classical limit of backflow will be discussed further in Chapter 5.
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2.2 Operator Form

We wish to express the flux, Eq.(2.6), in an operator form [1]. This enables us to find
the limit on the total amount of backflow that can occur by looking at the spectrum
of the flux operator, F̂ (t1, t2). We introduce a projection operator onto the positive
x-axis, Π = θ(x̂), and its complement, Π̄ = 1−Π = θ(−x̂). The flux operator is defined
by

F̂ (t1, t2) = Π(t2)− Π(t1)

=

∫ t2

t1

dt Π̇(t) (2.11)

and using Heisenberg’s equation of motion for Π̇(t),

F̂ (t1, t2) =

∫ t2

t1

dt
i

~
[H, θ(x̂)]

=

∫ t2

t1

dt Ĵ(t) (2.12)

where the current operator,

Ĵ =
1

2m
(p̂δ(x̂) + δ(x̂)p̂) (2.13)

The flux Eq.(2.6), and current Eq.(2.2), are now defined by

F (t1, t2) = 〈F̂ (t1, t2)〉

=

∫ t2

t1

dt 〈ψ|Ĵ(t)|ψ〉 (2.14)

and
J(t) = 〈ψ|Ĵ(t)|ψ〉 (2.15)

Note that in Eq.(2.13), p̂ and δ(x̂) are non-negative operators on states with positive
momentum but as they do not commute, Ĵ is not a positive operator and therefore does
not satisfy the requirement

〈ψ|Ĵ(t)|ψ〉 ≥ 0 (2.16)

Positive operators arise in quantum mechanics when dealing with probabilities, in-
herently positive quantities. The fact Ĵ is not one may be a possible reason for the
negativity of the flux, Eq.(2.14).
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2.3 The Eigenvalue Equation

We turn our attention to the eigenvalue problem

θ(p̂)F̂ (t1, t2)|Φ〉 = λ|Φ〉 (2.17)

where the states |Φ〉 consist of only positive momenta. An opposite sign convention to
previous work [3, 7, 8] is used, so now states which display backflow have λ < 0. The
most negative eigenvalue of the flux operator is the most negative value of the flux,
and this provides a limit on the total amount of backflow that can occur for any state.
For convenience, the time interval [t1, t2] is chosen to be [−T/2, T/2]. The eigenvalue
equation in momentum space is then

1

π

∫ ∞
0

dq
sin [(p2 − q2)T/4m~]

(p− q)
Φ(q) = λΦ(p) (2.18)

If we define rescaled variables u and v by p = 2
√
m~/Tu and q = 2

√
m~/Tv then

Eq.(2.18) reduces to

1

π

∫ ∞
0

dv
sin(u2 − v2)

(u− v)
φ(v) = λφ(u) (2.19)

where φ(u) = (m~/4T )1/4Φ(p) and is dimensionless. The flux now has the form,

F (−T/2, T/2) =
1

π

∫ ∞
0

du

∫ ∞
0

dv φ∗(u)
sin(u2 − v2)

(u− v)
φ(v) (2.20)

Since Eq.(2.19) is real, we can assume without loss of generality that the eigen-
states φ(u) are real valued functions. This means the corresponding wave functions in
configuration space will possess the symmetry

ψ∗(x, t) = ψ(−x,−t) (2.21)

Note also that the eigenvalues λ, including in particular −cbm(the most negative λ), are
dimensionless and lie in the range

−cbm ≤ λ ≤ 1 (2.22)

where cbm = 0.038452. This value was computed numerically using the computer
programme Mathematica. To date, Eq.(2.19) has not been solved analytically and
instead numerical methods must be used.

The independence from ~,m and T , of the quantity cbm invites comment. This
“quantum number” describes a strictly quantum effect that has no classical counterpart.
In the naive classical limit, ~ → 0, backflow does not disappear as one might expect,
prompting the question; why is backflow not observed in classical systems? It should
also be noted that the duration of a period of negative current can be arbitrarily long.
This is because the total flux over the time interval is bounded from below by −cbm, so
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∫ T/2

−T/2
dt J(t) ≥ −cbm (2.23)

and a relationship of the form

T J(τ) ≥ −cbm (2.24)

emerges for some time τ in the interval [−T/2, T/2]. Conversely, Eq.(2.24) indicates
that the current can be arbitrarily negative if only for a sufficiently short time.

The method used here to calculate cbm follows closely that of Bracken and Melloy [3],
who gave the first detailed account of probability backflow. Many authors have since
gone on to improve the precision of cbm, most notably Penz et al [8]. These authors
decompose the integral flux operator into a sum of Fourier transformed multiplication
operators and then apply the fast Fourier transform. The benefit of this method is that
the flux operator F̂ (t1, t2) need not be approximated by a finite square matrix, and so
calculating cbm requires less computational effort.

2.4 Properties of the Flux Operator

Penz et al [8] used linear algebra and functional analysis to show that the flux op-
erator, F̂ (t1, t2), was linear bounded, self-adjoint and not compact. In this section we
touch upon the key points of their argument but refer the reader to Ref.[8] for a more
detailed analysis.

2.4.1 Linear bounded and self-adjoint

Let a particle have the momentum space wave function φ and introduce the orthogonal
projection, O : L2(R)→ L2(R), where

(Of)(x) =

{
f(x) for x > 0
0 for x < 0

(2.25)

and L2(R) is the space of square integrable L2 functions in R.
Since the spectrum of an operator is invariant under unitary transformation, it holds

that for any fixed real time T > 0,

−cbm = inf σ(OBTO) (2.26)

where σ(A) denotes the spectrum of a linear operator A, and BT is the backflow operator
introduced by Penz et al [8]. This statement is equivalent to saying that the total
amount of negative probability flux that can occur is equal to the most negative value
of the spectrum of the flux operator, Eq.(2.12). Thus,

−cbm = inf σ(F̂ ) (2.27)
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and so,
inf σ(OBTO) = inf σ(F̂ ) (2.28)

The unitary equivalence between OBTO and F̂ , confirms that F̂ is linear bounded and
self-adjoint. The eigenvalues of the flux operator are therefore real.

2.4.2 Non-compact

The spectrum of OBTO does not vary with T and it follows that

−1 ∈ σ(OBTO) (2.29)

If OBTO (and equivalently F̂ ) were compact, then −1 would be an eigenvalue and

OBTOφ = −φ (2.30)

However, a lemma that exploits the generalized uniqueness theorem [21] shows a
contradiction with the above statement. For a compact operator every nonzero spectral
value is an eigenvalue. Since this is not true for OBTO, it must be non-compact and
therefore

σ(OBTO) ⊂ [−cbm, 1] (2.31)

This statement is equivalent to Eq.(2.22). Since the flux operator is non-compact it is
not necessarily diagonalizable.

2.5 The Backflow Maximising State

The backflow maximising state is found by solving the eigenvalue equation Eq.(2.19).
As mentioned earlier, Eq.(2.19) has never been solved analytically and this still remains
one of the biggest challenges within the subject of backflow. If the analytic form was
known this would be a huge step forward in our understanding and could potentially
pave the way to experimental observation of the effect. In Chapter 4 we will look at a
possible analytic expression for the backflow maximising state.

An approximate eigenstate, φmax(u), satisfying Eq.(2.19) with eigenvalue −cbm has
been calculated using numerical methods [1, 8]. A plot of φmax(u) in momentum space
is displayed in Fig.(2.1) and the corresponding wave function in configuration space is
shown in Fig.(2.2).
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Figure 2.1: Plot of the backflow maximising state, φmax(u), in momentum space.

Note that in the position representation the wave function at t = 0 has even real part
and odd imaginary part as alluded to earlier in Eq.(2.21).

Figure 2.2: Plot of the backflow maximising state in configuration space [8] (real part
, imaginary part - - -).

The current J(0, t) as a function of time is plotted in Fig.(2.3). The current is
negative during the time interval [−1, 1] and appears to be the only period over which
φmax(u) displays backflow. The area below the x-axis and bounded by J(0, t) between
[−1, 1] approximately sums up to −cbm, as required. There is also a very noticeable
singularity structure at t = ±1 at which the current jumps between −∞ and +∞. This
appears to be a distinct signature of the backflow maximising state. Yearsley et al [1]
speculate that this is related to some properties of the flux operator. From Eq.(2.12)
and Eq.(2.17) it can be seen that the backflow maximising state is an eigenstate of the
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current operator Ĵ , and so the state is of the form Ĵ |φ〉 evolved in time. Looking at
this quantity may indicate the cause of the jump since the current J(t) = 〈φ|Ĵ |φ〉.

Figure 2.3: Plot of the current J(0, t) for the backflow maximising state φmax(u) [1].

Penz et al [8] proposed that the state φmax(u) appears to have the asymptotic form,

φmax(u) ∼ sin(u2)

u
(2.32)

If we look at the form sin(u2)/u, then in terms of the dimensionless parameters u and
v, the current at the origin at time t = 0 is

J(0, 0) =
1

2π

∫ ∞
0

du dv (u+ v))φ(u)φ(v)

=
1

π

∫ ∞
0

du
sin(u2)

u

∫ ∞
0

dv sin(v2)

=
1

8

√
π

2
> 0 (2.33)

This value is positive but if we look at Fig.(2.3), the current at t = 0 for φmax(u) is
clearly negative. Therefore the backflow maximising state must be very different from
sin(u2)/u for small u, but may have this form for large u.
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3 The Spatial Extent of Backflow

3.1 Introduction

One of the key relationships established in Chapter 2 demonstrated that a period of
backflow can be arbitrarily long but ultimately, there is a temporal constraint specified
through the dimensionless number cbm. It is natural then to ask about the spatial ex-
tent of backflow. Does there exist a restriction on the regions of the x-axis over which
the effect takes place?

In this chapter we will show an inequality exists which places a condition on the
spatial extent of the negative current. This demonstrates that backflow is limited in
space. Furthermore, it is possible to give a quantitative measure of the backflowing
fraction of the x-axis. This is an important result that could certainly help in the ex-
perimental realisation of backflow. Berry [5] noted that another quantum phenomenon
known as superoscillations [22] is closely related to backflow. We will explore this con-
nection, specifically in relation to “strong backflow”, an effect that occurs in many-wave
superpositions when the component momenta of the wavepacket are strongly correlated.

3.2 Quantum Inequality for the Current

First introduced in quantum field theory, quantum inequalities describe local con-
straints on the magnitude and duration of negative energy densities. Their significance
has been utilised to help understand why the expectation value of an observable den-
sity can be arbitrarily negative after quantisation, even though the spatially integrated
density is non-negative. The work of Eveson et al [7] focused on the extent to which
quantum inequalities may be applied in the context of quantum mechanical systems.
Specifically, they derived a “kinematical” quantum inequality for the current density to
demonstrate that backflow is limited in space. In this section we review the key steps
of their analysis.

As we are looking at the spatial extent of the current at a specific moment in time
during a period of backflow, it is convenient to drop the t dependence from our working.
We consider a normalised state ψ which is square-integrable and also has a continuous,
square-integrable first derivative. It is useful to express the current Eq.(2.2), in the
form

J(x) =
1

m
Re (ψ∗(x)p̂ψ(x)) (3.1)

where p̂ is the usual momentum operator, p̂ = −i~∂/∂x. Integrating with respect to x
yields, ∫

dx J(x) =
1

m
Re〈ψ|p̂|ψ〉 (3.2)

By interpreting spatially smeared quantities of the form
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J(f) =

∫
dx J(x)f(x) (3.3)

as the instantaneous probability current measured by a spatially extended detector, we
can write ∫

dx J(x)f(x) =
1

m
Re〈ψ|M̂f p̂|ψ〉 (3.4)

where M̂f is a linear multiplication operator defined by,

M̂fψ(x) = f(x)ψ(x) (3.5)

and f(x) is any smooth, complex-valued function with compact support. Transforming
the right hand side of Eq.(3.4) to momentum space gives,∫

dx J(x)f(x) =
~
m

∫
dp

2π
p|M̂gφ(p)|2 (3.6)

and if we estimate the portion of the integral on the right hand side of Eq.(3.6) which
arises from p < 0, a bound emerges∫

dx J(x)f(x) ≥ ~
m

∫ 0

−∞

dp

2π
p|M̂gφ(p)|2

= − ~
m

∫ ∞
0

dp

2π
p|M̂gφ(−p)|2 (3.7)

Utilising the convolution theorem, it holds that

M̂gφ(p) =

∫ ∞
0

dp′

2π
φ(p′)g(p− p′), p′ ∈ R+ (3.8)

and because we can choose g ∈ C∞(R) to be real-valued, applying the Cauchy-Schwarz
inequality gives,

|M̂gφ(−p)|2 ≤
∫ ∞
0

dp′

2π
|g(p+ p′)|2 (3.9)

It is now possible to write Eq.(3.7) as∫
dx J(x)f(x) ≥ − ~

m

∫ ∞
0

dp

2π

∫ ∞
0

dp′

2π
p|g(p+ p′)|2 (3.10)

and by setting f(x) = g(x)2 and using Parseval’s theorem, we arrive at the final result,∫
dx J(x)|g(x)|2 ≥ − ~

8πm

∫
dx |g′(x)|2 (3.11)

for all normalised states ψ belonging to the class R of right-moving states defined by

R = {ψ ∈ L2(R) : φ(p) = 0 for p < 0} (3.12)
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As there is no reference to a specific Hamiltonian, this is a kinematical result as
oppose to a dynamical one. Note that in the limit ~ → 0, the inequality disappears.
This is in contrast to the result of Bracken and Melloy [3], where the probability P (t)
for remaining in x < 0 satisfies

P (t) ≤ P (0) + cbm (3.13)

and does not vanish when ~→ 0, since cbm is dimensionless.
There are two interesting comments to be made on Eq.(3.11). Firstly, there is no

upper bound on the smeared current. If we define,

ψκ(x) = eiκxψ(x) (3.14)

for any normalised ψ ∈ R, then ψκ ∈ R for all κ ≥ 0. The current becomes,

Jκ(x) = J(x) +
κ~
m
|ψ(x)|2 (3.15)

and it is evident that, ∫
dx Jκ(x)g(x)→∞ as κ→∞ (3.16)

The current can be arbitrarily negative. This coincides with the relationship Eq.(2.24),
which also established the current can be arbitrarily negative if only for a sufficiently
short time.

Secondly, the magnitude of the negative current times the square of its spatial extent
is bounded above for all right moving states in R. This can be seen by replacing g with
gκ(x) = κ1/2f(x/κ) in Eq.(3.11), and noting the right hand side of Eq.(3.11) scales by
a factor of κ−2. The limit κ→ 0, corresponds to the fact the current can be arbitrarily
negative at a point, while the limit κ → ∞ is consistent with 〈ψ|p̂|ψ〉 ≥ 0 for ψ ∈ R
and so the inequality vanishes. Thus the spatial extent of backflow is restricted and
state-independent.

It is quite remarkable that there exist both spatial and temporal limitations on
backflow. Is there a relationship between them? Does one impose a stronger constraint
on backflow than the other? These are interesting questions that could form the basis
for future work. The inequality Eq.(3.11) demonstrates that backflow is restricted in
space, but is there any way to give a quantitative measure of the fraction of the x-axis
over which the effect takes place? It is this question that we will address now.

3.3 A Measure of the Spatial Extent of Backflow

Quantum weak measurements challenge the notion that non-commuting observables
cannot be simultaneously measured. If the coupling with the measuring device is suffi-
ciently weak, properties of a quantum state can be determined without disturbing the
system. The result of such a measurement defines a new kind of value for a quantum
variable known as a weak value [23]. For a bounded operator Â, the weak value of a
measurement depends not only on the preselected state |ψ〉, but also the postselected
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state |φ〉. That is to say,

Aweak =
〈φ|Â|ψ〉
〈φ|ψ〉

(3.17)

A weak measurement of the momentum operator p̂ in the preselected state |ψ〉, with
the state |φ〉 = |x〉 postselected, can be shown to yield the local wavenumber k(x) [5],

Aweak = Re
〈x|p̂|ψ〉
〈x|ψ〉

= k(x) (3.18)

where

k(x) = Im
∂ψ(x)/∂x

ψ(x)
(3.19)

Backflow occurs in certain regions of the x-axis where k(x) < 0. The fraction of the
x-axis for which k(x) < 0 is characterised by the backflow probability Pback, defined as

Pback = lim
L→∞

1

2L

∫ L

−L
dxΘ(−k(x))

=

∫ 0

−∞
dk Pk(k) (3.20)

where Θ is the Heaviside step function, Pk is the probability density of the local
wavenumber, that is

Pk(k) = lim
L→∞

1

2L

∫ L

−L
dx δ(k − k(x)) (3.21)

and it is useful to define the wavenumber k = p/~. Pback is a measure of the backflowing
regions on the x-axis; an indication of the spatial extent of the negative current. This
is very similar to the smeared current Eq.(3.3), which represents the current measured
over a spatially extended region of the x-axis.

Weak measurements of the operator Â with eigenvalues An symmetrically dis-
tributed in the range −Amax ≤ An ≤ +An yields the probability distribution of weak
values, P (Aweak). For randomly chosen preselected and postselected states this has the
form [24],

P (Aweak) =
〈A2

n〉
2 (A2

weak + 〈A2
n〉)

3/2
(3.22)

where now 〈. . .〉 denotes an ensemble average and not a quantum expectation value as
before. By restricting the distribution to only positive semidefinite wavenumbers, we
can write,

Aweak = −Amax + k, An = −Amax + kn (3.23)

and Eq.(3.22) may be expressed as

Pk(k) =
〈k2n〉 − 〈kn〉2

2 (k2 − 2k〈kn〉+ 〈k2n〉)
3/2

(3.24)
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Here,

〈kn〉 =

∑N
n=0|Cn|2kn∑N
n=0|Cn|2

, 〈k2n〉 =

∑N
n=0|Cn|2k2n∑N
n=0|Cn|2

(3.25)

and Cn is a complex coefficient of the state |ψ〉. The backflow probability, Eq.(3.20),
can now be defined as

Pback =
1− rback

2
(3.26)

where

rback ≡
〈kn〉√
〈k2n〉

(3.27)

This is an important result that shows a relationship between the distribution of
component momenta, pn = ~kn, in the wavepacket and the fraction of the x-axis over
which backflow occurs. If the spread is larger, then Pback increases and approaches its
maximum value of a 1/2 when 〈k2n〉 � 〈kn〉2. We now possess a quantitative measure of
the spatial extent of backflow that can be applied to any state provided the distribution
of its component momenta is known. For the experimental realisation of backflow, Pback
could be extremely useful in helping plan a measurement of the effect.

To illustrate the material presented in this section, a plot of the local wavenumber
k(x) against x is shown in Fig.(3.1) for a wavefunction of the form,

ψ(x) =
20∑
n=1

1√
n

exp[i(nx+ φn)] (3.28)

where φn is a phase factor randomly chosen from the interval [0, 2π].

Figure 3.1: Plot of the local wavenumber k(x), for the 20-wave superposition Eq.(3.28).
The regions of backflow are indicated by black bars [5].
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Fig.(3.1) provides a clear way of visualising the regions of backflow on the x-axis.
For this 20-wave superposition, which is periodic in x with period 2π, there are nine
backflow regions per period. Using Eq.(3.26), the backflow probability Pback = 0.136.

3.4 Strong Backflow and Superoscillations

Backflow is related to the phenomenon of superoscillations, a seemingly paradoxical
effect in which waves can locally oscillate much faster than any components in their
Fourier spectrum [22]. The fast oscillations in an associated function are dependent on
the preselected and postselected states of a weak measurement [25]. It is the weak values
which lie outside the allowed eigenvalue spectrum that give rise to this counterintuitive
effect. It was Berry [5] who brought attention to the relationship between backflow and
superoscillations but it has not been explored elsewhere in the literature. Certainly
there are parallels between the two. Superoscillations can be arbitrarily fast and can
persist for unexpectedly long times occupying large regions of the x-axis [26]. As we
saw in Sec.(2.3) the current can be arbitrarily negative if only for a sufficiently short
time, indicating in a way, that backflow can be ‘abitrarily fast’. In contrast, it is also
true that a period of backflow can be arbitrarily long.

In many-wave superpositions when the Fourier components are strongly correlated,
the region of backflow is much larger than if the components were randomly distributed.
The backflowing fraction of the x-axis characterised by Pback approaches its maximum
value of 1/2 and the state displays “strong backflow”. To demonstrate this, consider
the wave function

ψstrong(x) = (1− a exp(ix))N , N � 1, a < 1 (3.29)

which is a variant of the superoscillatory function [26],

f(x) = (cos(x) + ib sin(x))N , N � 1, b > 1 (3.30)

For f(x) when b > 1, the variation near x = 0 is faster and so,

f(x) ≈ exp (N log(1 + ibx)) ≈ exp(ibNx) (3.31)

where b describes the degree of superoscillation. Around this region, the amplitude of
superoscillations is approximately constant and f(x) exhibits “fast superoscillations”.
A similar effect occurs in ψstrong near x = 0 for a < 1, the largest backflow occuring
when the local wavenumber is,

k(0) = − Na

1− a
(3.32)

The corresponding backflowing fraction of the x-axis is,

Pback =
cos−1(a)

π
(3.33)

which is far higher than the value predicted using Eq.(3.26) for a random distribution,
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Pback ≈
1

8Na
(3.34)

However, evolution of the state according to the Schrödinger equation results in the
destruction of the phases responsible for strong backflow. The region of backflow shrinks
and becomes comparable in size to that of a random superposition. This is shown in
Fig.(3.2). The strong backflow region gradually decreases but undergoes a quantum
revival [27] at t = 2π due to the inital state ψstrong(x) being periodic. The destruc-
tion of strong backflow is consistent as N increases, best shown by considering Fig.(3.3).

Figure 3.2: Evolution of the strong backflowing state ψstrong with a = 0.5 and N = 6 [5].

A similar process occurs with superoscillations. If we treat f(x) as the initial state of
a wave function in free space undergoing evolution according to the Schrödinger equa-
tion, then eventually the superoscillations disappear [26]. This is due to the component
momenta becoming exponentially different in magnitude during the time evolution of
the state.

Backflow and superoscillations are examples of counterintuitive quantum phenom-
ena which on closer inspection have striking similarities. It is known that fast super-
oscillations occur in regions where the amplitude of the function f(x) is small [28], and
so one might speculate that strong backflow is only evident in small negative flux states
where the component momenta are strongly correlated.
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Figure 3.3: Destruction of strong backflow in the initial stages of evolution for the state
ψstrong with a = 0.5 and (a) N = 6, (b) N = 10, (c) N = 14, (d) N = 18. Here
τ = Nt [5].
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4 States Which Display Backflow

4.1 Introduction

Not every quantum state exhibits backflow, and so an interesting set of questions
concerns the type of state which does. It is often useful to look at the Wigner func-
tion W , of a state since negative values of W give a clear indication of non-classical
behaviour. However as we saw in Sec.(2.1) this is not a sufficient condition for the
negativity of the flux, therefore a more detailed analysis is required.

Bracken and Melloy [3] presented the first comprehensive computation of a normal-
isable state which displays backflow. Although physically significant, the wave function
chosen was not reflective of a realistic state and produced only a small fraction of the
maximum possible backflow. Plane waves have frequently been used in the literature to
illustrate the backflow effect [1, 3, 5]. The most interesting application was by Berry [5]
who found that in many-wave superpositions in which the component momenta are
strongly correlated, the state will exhibit strong backflow.

In their work on the arrival time problem, Muga et al used the example of a Gaussian
in momentum space with no negative momentum components [10]. The corresponding
wave function in configuration space is described by,

ψ(x, t) =
1

(2π~)1/2

∫ ∞
0

dp exp

(
i

~

(
px− p2t

2m

))
〈p|φin(0)〉 (4.1)

where 〈p|φin(0)〉 is a freely evolving asymptote associated with scattering theory. This
is not a simple function and due to conditions placed on the magnitude of the momenta,
the amount of backflow displayed is far from the theoretical maximum. The example
served only to demonstrate the effect and that it is possible for a perfect absorber to
emit probability. Since their analysis focused more on the operational arrival time dis-
tribution and the relationship between backflow and perfect absorption, we will not
study this state further but refer the reader to Ref.[10].

Important contributions have been made by Yearsley et al [1]. They found that a
more physically realistic state consisting of a superposition of two Gaussian wavepack-
ets will display around 16% of the maximum possible backflow. Although small, their
work begins to address the long standing problem of what type of state could be used
to observe backflow experimentally. Also investigated was an analytic expression for
the backflow maximising state. It is encouraging that attempts have been made to find
an analytic solution to the eigenvalue equation Eq.(2.19), as this problem underpins
the whole subject of backflow.

In this chapter we focus on states that have been significant in the advancement of
the subject. A superposition of two plane waves will demonstrate that negative values
of the current can be understood as an interference effect. The more familiar example
of a superposition of two Gaussian wavepackets is examined as this has the potential
to be experimentally realised. We will study the normalisable state first presented by
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Bracken and Melloy. Finally, an analytic expression for the backflow maximising state
put forward by Yearsley et al will be reviewed. Note that a Schrödinger cat state will
also produce backflow but since its preparation is closely related to the experimental
realisation of the effect, we save the analysis for Chapter 6. It should be emphasised
that regardless of the type of state which displays backflow, after a sufficiently long
period of time a large proportion of the wave packet will be located in x > 0 [3].

4.2 Superposition of Plane Waves

It is informative to consider a superposition of two plane waves with positive mo-
menta described by the wave function,

ψplane(x, t) =
∑
n=1,2

Cn exp[ipn(x− pnt)], Cn ∈ R (4.2)

where for convenience we choose h = m = 1. Since ψplane cannot be normalised, these
results have no direct physical interpretation but serve to illustrate the backflow effect.

The probability current, Eq.(2.2), at x = 0 for ψplane is

J(0, t) = C2
1p1 + C2

2p2 + C1C2(p1 + p2) cos[(E1 − E2)t] (4.3)

This oscillates between a maximum value of (C1p1 + C2p2)(C1 + C2) and a minimum
value of (C1p1 − C2p2)(C1 − C2). If however, C1 > C2 and C1p1 < C2p2, the minimum
value is negative and the state displays backflow. This example demonstrates that
negative values of J can be understood as an interference effect. A plot of the current
at the origin is shown in Fig.(4.1) for the following parameters,

p1 = 0.3, p2 = 1.4, C1 = 1.8, C2 = 1 (4.4)

-5 5
t

1

2

3

4

5

JH0, tL

Figure 4.1: Plot of J(0, t) for a superposition of two plane waves with the parameters
given in Eq.(4.4).
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We will now show the relationship that emerges between the local wavenumber k(x)
of ψplane and the region of backflow on the x-axis. If we choose a specific moment in
time during a period of backflow and change the parameters to,

p1 = 0, p2 = 1, C1 = 1, C2 = a (4.5)

then ψplane is now of the form,

ψplane(x) = 1− a exp(ix) (4.6)

and has local wavenumber,

k(x) = a
(a− cos(x))

1 + a2 − 2a cos(x)
(4.7)

This periodic function displays backflow for values of a < 1, within the interval
|x| < cos−1(a). Berry [5] studied how the width of the region of backflow changes for
varying values of a and we show his results in Fig.(4.2).

Figure 4.2: Plot of the local wavenumber k(x), Eq.(4.7), for the two-wave superposition
Eq.(4.6). The regions of backflow are indicated by black bars, for (a) a = 0.001, (b)
a = 0.2, (c) a = 0.5, (d) a = 0.9. The width of the region of backflow increases as a
decreases and the degree of backflow decreases, i.e. as k(x) gets less negative [5].

It is quite striking to see the width of the region of backflow increase as a decreases.
In the limit a → 0, the region grows and covers half of the x-axis even though the
negative flux is getting smaller and the amount of backflow is actually decreasing. The
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backflow probability Pback is the probability a given x lies in a region of backflow, and
for ψplane this is,

Pback =
cos−1(a)

π
(4.8)

4.3 Superposition of Gaussian Wavepackets

The replacement of plane waves with Gaussians tightly peaked in momentum is
representative of a more physically realistic state that has the potential to be experi-
mentally realised [1]. We consider a sum of two initial Gaussian wavepackets with equal
spatial width σ, evolved for a time t. The corresponding normalised wave function is

ψ(x, t) =
∑
n=1,2

Cn
1√

4σ2 + 2it
exp

(
ipn(x− pnt)−

(x− pnt)2

4σ2 + 2it

)
, Cn ∈ R (4.9)

where again we set h = m = 1. It is important that the state is normalised to ensure
the flux is properly normalised. Note that if σ → ∞ then ψ → ψplane. By making
σ large enough, the current at x = 0 is the product of Eq.(4.3) and a slowly varying
function. One would therefore expect ψ to exhibit backflow just like ψplane. Yearsley
et al [1] found the parameters

p1 = 0.3, p2 = 1.4, C1 = 1.8, C2 = 1, σ = 10 (4.10)

produced the greatest amount of backflow for a superposition of two Gaussian wavepack-
ets as described by Eq.(4.9). The current at the origin is clearly negative at several
times as can be seen in Fig.(4.3).

Figure 4.3: Plot of the current at x = 0 for a superposition of two Gaussian wavepack-
ets [1] with the parameters given in Eq.(4.10).
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If we plot the probability of remaining in x < 0 as a function of time, it is apparent
that backflow can occur in several disjoint time intervals, as shown in Fig.(4.4).

Figure 4.4: Plot of the probability for remaining in x < 0 as a function of time for a
superposition of two Gaussian wavepackets [1].

The question is now; how much probability backflow does this state display in
comparison to the theoretical maximum value of cbm? To answer this the flux, Eq.(2.6),
must be calculated for a time interval [t1, t2], during which the current is negative and
the largest amount of backflow occurs. Calculations show that,

F ≈ −0.0061 (4.11)

which is around 16% of the theoretically allowed maximum. The fraction of the x-axis
over which backflow occurs for this state is,

Pback = 0.1162 (4.12)

A strong indication of the non-classicality of this state is that the Wigner function
of a superposition of Gaussians may be negative in certain regions. However, Gaussian
wavepackets have support on both positive and negative momentum so the presence of
negative current could be a result of some initial negative momentum. It is therefore
necessary to check this is not the case by making an order of magnitude estimate.

The state consists of two Gaussian wavepackets centred about different momenta.
If we take the wavepacket centred around p = 0.3, then the probability that a measure-
ment of the momentum of this state would produce a negative answer is approximately,

Pr(p < 0) ∼
∫ 0

−∞
dp exp(−200(p− 0.3)2) ∼ 10−10 (4.13)

26



which is negligible. The backflow effect is therefore responsible for the negative flow of
probability.

4.4 A Normalisable State

We focus our attention to the state first presented by Bracken and Melloy [3] which
is described by the wave function,

ψbm(x, t) =
1

(2π~)1/2

∫ ∞
0

dp exp

(
i

~

(
px− p2t

2m

))
φ(p) (4.14)

where φ(p) = 0 for p < 0, or else

φ(p) =
18p

(35K)1/2

(
e−p/K − 1

6
e−p/2K

)
, p > 0 (4.15)

Here, K is a positive constant with dimensions of momentum. Both ψbm(x, t) and
φ(p) are normalised states, therefore we may regard ψbm as having a direct physical
interpretation. It is unlikely however that a state of the form Eq.(4.14) would ever
appear in nature, so although this example demonstrates backflow it should not be
thought of as a realistic state in the strict sense.

The current Eq.(2.2) at the origin, for ψbm has the form,

J(0, t) =
1

4πm~

∫ ∞
0

dp

∫ ∞
0

dq (p+ q) exp

(
i

2m~
(
p2 − q2

)
t

)
φ∗(p)φ(q) (4.16)

which when calculated at t = 0 is

J(0, 0) = − 36K2

35πm~
< 0 (4.17)

The current is negative during the time interval [0, t1] where t1 ≈ 0.021m~2/K2. The
corresponding flux Eq.(2.6), for this period of backflow is

F ≈ −0.0043 (4.18)

which is around 11% of the theoretical maximum. This is a very small amount but it
is momentous. What Bracken and Melloy have demonstrated by using a normalisable
wave function is that backflow is a physically relevant quantum effect which can occur
in non-relativistic free particles. The implications of this were already evident in the
arrival time problem, but Allcock [2] failed to give the effect the appropriate weight it
deserved. Although Allcock will be regarded as the one who discovered the backflow
effect, it is Bracken and Melloy who revealed its true significance.
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4.5 Guessing the Analytic Form of the Backflow

Maximising State

It is of great interest to find the analytic expression for the backflow maximising
state. By a process of logical guesswork, Yearsley et al [1] proposed two analytic
candidate states, one of which showed greater promise. In this section we look at this
state and see that although it appears to match the numerical results of the backflow
maximising state by Penz et al [8], it does not exhibit the maximum possible backflow.

We consider the momentum space wave function φg(u) given by,

φg(u) = N

[
ae−bu

(
1

2
− C(u)

)]
, a, b ∈ R (4.19)

where N is a normalisation factor which can be calculated by solving the integral,

N−2 =

∫ ∞
0

du

(
a2e−2bu +

(
1

2
− C(u)

)2

+ 2ae−bu
(

1

2
− C(u)

))
(4.20)

and C(u) is the Fresnel integral, defined by

C(u) = FresnelC

(√
2

π
u

)
=

√
2

π

∫ u

0

dx cos(x2) (4.21)

A plot of φg(u) in momentum space for the optimum values of a and b to maximise
backflow is shown in Fig.(4.5).

Figure 4.5: Plot of φg(u) for a = 0.6 and b = 2.8 (solid line), compared with the
numerical result (dashed line) [1].

This state has the asymptotic form,
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φg(u) ∼ N
sin(u2)

u
(4.22)

Since φg(u) is only an approximate eigenstate of the flux operator, the time interval
over which the current is negative may not exactly match [−1, 1]. It is therefore nec-
essary to adjust the the time interval [t1, t2] to correspond with the period of negative
flux. The current, defined in terms of the dimensionless parameters u and v, is

J(0, t) =
1

2π

∫ ∞
0

du dv (u+ v) exp
(
it(u2 + v2)

)
φ(u)φ(v) (4.23)

which may can also be expressed as,

J(0, t) = Re

(
1

π

∫ ∞
0

du exp(itu2)φ(u)

∫ ∞
0

dv v exp(−itv2)φ(v)

)
=

1

π
Re (U(t)V (t)) (4.24)

The process to calculate the current Eq.(4.24), is reduced to solving the two inte-
grals U(t) and V (t) separately. (See Ref.[1] for a detailed solution to the problem). We
plot the current as a function of time in Fig.(4.6).

Figure 4.6: Plot of J(0, t) for the state φg(u) with a = 0.6 and b = 2.8 [1].

The plot of J(0, t) is in good agreement with the numerical result Fig.(2.3) but does
not possess the distinct singularity structure at t = ±1. There is however a significant
period of backflow clearly indicted by the negativity of the current between the interval
[−1, 1]. The most negative value of the flux, Eq.(2.14), is

F = −0.02757 (4.25)
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which is around 70% of the theoretical maximum. This state displays a much greater
amount of backflow than any other analytic state previously discovered, however it is
still much less than the backflow maximising state.

A plot of the probability for remaining in x < 0 as a function of time, for the guess
state φg(u), can be seen in Fig.(4.7). This is a very striking illustration of backflow
which unequivocally demonstrates the effect. There is a clear increase of probability
within the time interval [−1, 1] when the current is negative.

Figure 4.7: Plot of the probability P (t) for remaining in x < 0 as a function of time for
the guess state φg(u) [1].

It would be of great interest to find and plot the configuration space wave function
of φg(u) and compare it with that of the backflow maximising state computed by Penz
et al [8] as shown in Fig.(2.2). A direct comparison may provide clues as to how the
form of the momentum space wave function must be modified in order to display a
greater percentage of backflow. The singularity structure of the current at t = ±1 is
another characteristic that has failed to be matched. Any future work must focus on
an analytic solution that possesses this structure.
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5 A New Quantum Number

5.1 Introduction

The appearance of the dimensionless quantity cbm in the quantum mechanical de-
scription of a free particle is itself remarkable. The fact this number describes a limit
on backflow is not surprising, for if there was no restriction then increasing amounts of
probability could flow “backwards” and the situation would certainly be more alarm-
ing. What is striking about cbm is its independence from the parameters ~,m and T .
One does not expect this value to be independent of the duration of the time interval
over which backflow occurs, nor of the mass of the particle. The independence from ~
also raises concerns about how this strictly quantum effect ceases to exist in classical
systems. In the naive classical limit ~ → 0, backflow does not go away as one would
hope.

Backflow is an interference effect between parts of the state that have crossed the ori-
gin, and parts which have yet to cross. As noted earlier in open system models, these
interference effects are suppressed by the presence of an environment and backflow
ceases to occur [13]. The process of decoherence is a central idea in the understanding
of emergent classicality and provides good insight into why backflow disappears in the
standard approach to the classical limit. There are however certain situations where the
eigenvalues of the flux operator Eq.(2.12), in particular the most negative eigenvalue
−cbm, become dependent on certain physical parameters, most notably ~.

In this chapter we consider a more realistic measurement model [1], where the use of
quasiprojectors instead of exact projection operators restores the naive classical limit,
and the backflow effect diminishes when ~ → 0. So far we have only focused on the
non-relativistic behaviour of a particle, but this must correspond to a limiting case of
its relativistic description. For particles governed by the Dirac equation [4], it will be
shown that the amount of backflow depends on the dimensionless combination mc2T/~,
where c is the speed of light. It has been speculated that particles might literally for
some time intervals masquerade as antiparticles [5].

Finally, we study the case of a particle subject to a constant force F > 0 in the
positive x-direction and ask how much probability backflow can occur in opposition to
this force over a given time interval [6]. Here, the effect of backflow gets smaller when
the size of the force is increased.

5.2 Quasiprojector Measurement Model

A measurement to determine if the particle is in x > 0 at time t1, and then at a
subsequent time t2, could lead to the observation of backflow if the flux,

F (t1, t2) = 〈Π(t2)〉 − 〈Π(t1)〉 (5.1)
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expressed in terms of the exact projection operator Π = θ(x̂), is negative. However the
use of exact projection operators does not incorporate the inherent imprecision of real
measurements. Instead, one may choose to define the flux in terms of a quasiprojectorQ,
which is perhaps more representative of a realistic measurement model. Quasiprojectors
are self-adjoint operators but since they do not satisy the property, Q2 = Q, they are
not projection operators in the strict sense. For our purposes, we define a quasiprojector

Q =

∫ ∞
0

dy δσ(x̂− y) (5.2)

where δσ(x̂− y) is a smoothed out δ-function,

δσ(x̂− y) =
1

(2πσ2)1/2
exp

(
−(x̂− y)2

2σ2

)
(5.3)

and σ is a physical parameter characterizing the imprecision of real measurements.
Note that if σ → 0, then Q → θ(x̂) and Eq.(5.3) goes to the usual δ-function. The
introduction of Q means the flux, as expressed in Eq.(2.20), is now

F (−T/2, T/2) =
1

π

∫ ∞
0

du

∫ ∞
0

dv φ∗(u)
sin(u2 − v2)

(u− v)
e−a

2(u−v)2φ(v) (5.4)

and the eigenvalue equation Eq.(2.19), obtains the same exponential factor,

1

π

∫ ∞
0

dv
sin(u2 − v2)

(u− v)
e−a

2(u−v)2φ(v) = λφ(u) (5.5)

where a is a dimensionless quantity given by a2 = 2mσ2/~T . The eigenvalues λ will
now depend on a, and thus have a dependence on ~.

The limit on the total amount of backflow, ∆max(a), is equal to the most negative
eigenvalue of Eq.(5.5). Using numerical methods, Yearsley et al [1] solved Eq.(5.5) to
look at how ∆max(a) varies for increasing a. The results are displayed in Fig.(5.1).
In the naive classical limit ~ → 0, a → ∞ and ∆max(a) → 0. This is significant as it
suggests that backflow diminishes in the more realistic measurement model of quasipro-
jectors when ~ → 0. Note that ∆max(a) is still negative for finite a, so although the
amount of backflow is less, the effect is still noticeable and could be measured.

Approximate eigenstates of Eq.(2.19) will have eigenvalues 1 or 0 provided the
wave packets they consist of clearly cross or do not cross x = 0 during the inter-
val [−T/2, T/2]. For the modified eigenvalue equation Eq.(5.5), there is an additional
requirement. An incoming wave packet will not distinguish a projector from a quasipro-
jector as long as it crosses x = 0 far enough away from the end-points of the interval
[−T/2, T/2]. Yearsley et al [1] found that the positive eigenvalues in the range [0, 1]
do not significantly change as a increases. If they had converged to zero, the results
concerning ∆max(a) would be meaningless. Since this is not the case, we can regard
the use of quasiprojectors as being a relevant description of the measurement process,
where one would expect backflow to vanish in the appropriate classical limit.
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Figure 5.1: Plot of the most negative eigenvalue of Eq.(5.5), ∆max(a) for increasing a.

5.3 Backflow for a Free Dirac Electron

The description of backflow presented so far has concentrated on the non-relativistic
behaviour of a particle. Since this must correspond to a limiting case of its relativistic
description [4], we now ask the question: How does probability backflow manifest itself
in the relativistic case?

It will suffice to consider a free Dirac electron moving in one dimension along the
x-axis. The corresponding wave function has two complex-valued components,

Ψ(x, t) =

(
ψ1(x, t)
ψ2(x, t)

)
(5.6)

and we have a Dirac equation in (1 + 1) dimensions,

i~
∂Ψ(x, t)

∂t
= HΨ(x, t) (5.7)

where the Hamiltonian,
H = cσ1p+ σ3mc

2 (5.8)

is expressed in terms of the Pauli matrices σi, the rest mass of the particle m, and the
speed of light c. The probability density ρ, and probability current J , then have the
form,

ρ(x, t) = Ψ†(x, t)Ψ(x, t)

= |ψ1(x, t)|2 + |ψ2(x, t)|2 (5.9)
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and

J(x, t) = cΨ†(x, t)σ1Ψ(x, t)

= c [ψ∗1(x, t)ψ2(x, t) + ψ∗2(x, t)ψ1(x, t)] (5.10)

Note that |J(x, t)| ≤ cρ(x, t), which means that the probability velocity v(x, t), defined
by

v(x, t) =
J(x, t)

ρ(x, t)
(5.11)

satisfies |v(x, t)| ≤ c. This ensures that there is no superluminal transport of probability
associated with the free Dirac equation.

The process to determine the limit on the total amount of backflow is similar to the
non-relativistic case. Here, a general positive energy and positive momentum solution
to the Dirac equation is used to determine the probability current, Eq.(5.10), at x = 0.
For the time interval [0, T ], the limit on the total amount of backflow, ∆max(ε), is then
equal to the most negative eigenvalue of the equation,

1

π

∫ ∞
0

dv
sin[2(E(u)− E(v))/ε2][u(E(v) + 1) + v(E(u) + 1)]

[2(E(u)− E(v))/ε2]
√
E(u)(E(u) + 1)E(v)(E(v) + 1)

Φ(v) = λΦ(u) (5.12)

where

E(u) =

√
p2 +m2c2

mc
, p = mcεu (5.13)

and

ε =

√
4~

mc2T
(5.14)

By letting c → ∞, so that ε → 0 and E(u) → 1 + ε2u2/2, we recover the non-
relativistic eigenvalue equation for a free particle, Eq.(2.19). Bracken and Melloy [4]
used numerical methods to find the most negative eigenvalue ∆max(ε) of Eq.(5.12).
They also looked at how ∆max(ε) varies for a range of values of the parameter ε. We
plot their results in Fig.(5.2).

As can be seen in Fig.(5.2), ∆max(ε) decreases monotonically as ε increases. From
Eq.(5.14), it is clear that ∆max(ε) now depends on the parameters ~,m, T and the speed
of light, c. This is in stark contrast to the non-relativistic case, where the most negative
eigenvalue −cbm, was a dimensionless quantity [3]. These results may be interpreted in
two ways.

Firstly, the amount of backflow decreases if T → ~/mc2, where ~/mc2 is an ex-
tremely small time of the order of 10−21s, when relativistic effects become important.
Thus one can conclude that these relativistic corrections would be almost impossible to
observe in experiment.
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Figure 5.2: Plot of the most negative eigenvalue of Eq.(5.12), ∆max(ε) as a function of
ε.

Alternatively, if we choose to fix c, then the most negative value of ∆max(ε) emerges
if T →∞, m→∞ or ~→ 0. In the naive classical limit ~→ 0, the amount of probabil-
ity backflow increases. Although this “limit” is an oversimplification, one would expect
this clearly non-classical effect to vanish. It is worrying that this is so, however it does
coincide with the non-relativistic case, where taking ~→ 0 does not cause backflow to
disappear.

5.4 Backflow Against a Constant Force

If a non-relativistic particle is subject to a constant force F > 0 in the positive
x-direction, how much probability backflow can occur in opposition to this force over a
given time interval [0, T ]? This question was posed by Bracken and Melloy [6]. Similar
to the case of a free particle [3], and Dirac electron [4], the problem becomes one of
solving an eigenvalue equation of the form,

1

π

∫ ∞
0

dv
sin[u2 − v2 + α(u− v)]

(u− v)
φ(v) = λφ(u) (5.15)

where α is a dimensionless parameter defined by

α =
FT

3
2

√
4m~

(5.16)

Note that if F = 0 then α = 0 and we recover the non-relativistic eigenvalue equation
for a free particle, Eq.(2.19). Using numerical methods, the most negative eigenvalue
∆max(α) of Eq.(5.15) was calculated for a chosen set of values of α. The results are
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displayed in Fig.(5.3), and reveal the relationship,

∆max(α) = −0.039e−2α (5.17)
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Figure 5.3: Plot of the most negative eigenvalue of Eq.(5.15), ∆max(α) as a function of
α.

As α increases, the value of ∆max(α) is suppressed by the exponential and decreases.
Through Eq.(5.16), it is apparent that ∆max(α) now depends on the parameters F,m, T
and ~. In the limit ~→ 0, the backflow effect decreases as one would hope. This is also
the case for increasing F or T . What is surprising is that ∆max(α) actually increases
for increasing m.

5.5 Concluding Remarks

The focus of the material presented in this chapter was to highlight different sit-
uations where the most negative eigenvalue −cbm, which also provides a limit on the
maximum possible backflow, becomes dependent on certain physical parameters. Most
notably an emphasis was placed on the reappearance of ~, since letting ~→ 0 is regarded
as restoring the classical limit. Backflow was seen to diminish in both the quasiprojec-
tor measurement model and in opposition to a constant force when ~ → 0. This was
not the case for a relativistic particle, however this does agree with the non-relativistic
treatment where taking ~ → 0 does not result in the disappearance of the effect. The
process of decoherence provides the best explanation as to why backflow is not evident
in classical systems, but by studying these three scenarios a better understanding of
the effect has been acquired.
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6 Experimental Realisation

6.1 Introduction

It is of great importance that backflow be observed experimentally. This peculiar
effect first noted by Allcock [2], emerged in the context of the arrival time problem in
quantum mechanics. It has been argued that the time of arrival of a free particle cannot
be accurately measured [29], and so one might suspect there to be an inherent difficulty
in measuring backflow. It is certainly surprising that no one has yet attempted to do
so but exactly what method would be most effective is unclear.

The probability current J is used extensively in the literature on backflow but is
generally regarded as being of no operational significance. Attempts have been made
to relate the current to measurement [30, 31] and it has even been suggested that J
is fundamental in the understanding of scattering phenomena [32]. The most interest-
ing treatment examines special protective measurements of J which do not disturb the
wave function [33]. The arguments put forward strongly favour associating physical
reality with the quantum state of a single system and these sentiments are reinforced
by recent work [34]. If progress is made in determining the current experimentally,
the process would naturally lend itself to a measurement of backflow. In this chapter
we discuss both direct and indirect methods that may lead to the experimental reali-
sation of backflow. It is felt that for the subject to advance, the effect must be observed.

6.2 Direct Measurement of Backflow

The most direct method of measuring backflow could in principle be done by making
position measurements on ensembles of single-particle systems. The flux, Eq.(2.14), can
be defined as

F (t1, t2) = 〈Π(t2)〉 − 〈Π(t1)〉 (6.1)

which is the difference between two probabilities. If we possessed two identical ensem-
bles, each prepared in the initial state |ψ〉, then it is possible to deduce the flux. A
measurement on the first ensemble to determine if the particle is in x > 0 at time t1,
would yield 〈Π(t1)〉. The same measurement performed on the second ensemble at time
t2, would give 〈Π(t2)〉. If 〈Π(t1)〉 > 〈Π(t2)〉, the flux, Eq.(6.1), is negative and there is
backflow.

Yearsley et al [1] suggest that this could be achieved using a weakly interacting
Bose-Einstein condensate, since a single measurement on the condensate is effectively
a measurement on an ensemble of non-relativistic particles. The main challenge is the
preparation of identical initial states consisting of only positive momentum. As we saw
earlier in Sec.(4.3), a superposition of Gaussian wavepackets is experimentally viable
but does not produce a large amount of backflow. One may ask the question; what
state can be prepared experimentally to demonstrate backflow? The answer potentially
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is a Schrödinger cat state, and we will discuss this in Sec.(6.4).
Bracken and Melloy [3] propose that a more practicable alternative would be to mea-

sure the electric current density, since this is proportional to the probability current,
for an electrically charged particle. The initial states of the particles must be prepared
with only positive velocity components but these can be of arbitrary size. For each
particle a measurement of the electric current density is made at subsequent intervals
of time. If one were to observe a current density in direct opposition to the velocity
(multiplied by the charge), then this would confirm the presence of backflow. However
the feasibility of such a scheme is questionable. One must measure to great accuracy an
extremely small amount of current due to a single electric charge moving on the scale
of micrometres per microsecond. The delicate nature of such a measurement, and also
its reproducibility, suggest it is unlikely that backflow will be observed in this way.

6.3 Complex Potential Model for Arrival Time

The arrival time problem is inextricably linked with the backflow effect. Here, we
are concerned with finding the probability that an incoming wavepacket arrives at x = 0
during a fixed time interval. There exist many different approaches to this problem [35–
39], but in some specific models it is possible to extract the current explicitly from the
arrival time probability. For states displaying backflow the current is negative whereas
the arrival time probability is non-negative. A noticeable difference between these two
quantities will give a clear indication of backflow.

We consider an initial wavepacket localised in x < 0 consisting entirely of posi-
tive momenta and introduce a complex absorbing potential, −iV0θ(x̂), of step function
form in x > 0. (See Ref. [9, 40–42] for other arrival time approaches with a complex
potential). The total non-hermitian Hamiltonian is

H = H0 − iV0θ(x̂) (6.2)

where H0 is the free Hamiltonian. The probability that the wavepacket is in x < 0 and
has yet to be absorbed by the complex potential is given by the survival probability
N(τ), defined as

N(τ) = 〈ψτ |ψτ 〉 (6.3)

where the state |ψ〉, evolved for a time τ with the complex Hamiltonian Eq.(6.2), is
described by

|ψτ 〉 = exp(−iH0 − V0θ(x̂))τ |ψ〉 (6.4)

The probability for the wavepacket to cross x = 0 in the time interval [τ, τ +dτ ] is then
the arrival time distribution,

Π(τ) = −dN

dτ

= 2V0〈ψτ |θ(x̂)|ψτ 〉 (6.5)

If we differentiate with respect to τ then
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dΠ

dτ
= −2V0Π + 2V0〈ψτ |Ĵ |ψτ 〉 (6.6)

where Ĵ is the current operator, Eq.(2.13). We see that Eq.(6.6) is a differential equation
for Π(τ) and can be solved to give

Π(τ) = 2V0

∫ τ

−∞
dt e−2V0(τ−t)〈ψτ |Ĵ |ψτ 〉 (6.7)

Assuming Π(τ) → 0 as τ → −∞, then Eq.(6.7) is the exact expression for Π(τ)
and shows the explicit dependence on the current operator Ĵ . Although Ĵ is not a
positive operator, Eq.(6.7) is positive by construction. How backflow will affect Π(τ)
is unclear, so it is helpful to only consider the usual weak measurement approximation
where V0 is taken to be small and we may neglect the complex potential term in |ψτ 〉.
The arrival time distribution is then

Π(τ) ≈ 2V0

∫ τ

0

dt e−2V0(τ−t)〈ψt|Ĵ |ψt〉

= 2V0

∫ τ

0

dt e−2V0(τ−t)J(t) (6.8)

where |ψt〉 = e−iH0t|ψ〉. The distribution Π(τ) is no longer strictly positive because the
current may be negative for states that display backflow. Even integration over time
does not necessarily ensure the positivity of Eq.(6.8). We only took the limit V0 → 0
for the complex potential term in |ψτ 〉, but not in the rest of the expression, so the
positivity observed in Eq.(6.7) is not preserved. However, for sufficiently small V0 this
is not significant, and Π(τ) can be regarded as the arrival time distribution measured
by a realistic measurement. This in principle can be determined experimentally and
by using the process of deconvolution [43, 44], the current (and consequently the flux),
can be calculated from Eq.(6.8).

For states that exhibit backflow the flux is negative, whereas the probability for
crossing x = 0 during the time interval [t1, t2], defined as

P(t1, t2) =

∫ t2

t1

dtΠ(t) (6.9)

is a strictly positive quantity. A comparison of the two values provides a way to poten-
tially observe backflow if there is a significant difference between them.

Note that Eq.(6.8) has the form of the current smeared over a period of time. A
region of negative current will counteract and essentially cancel out a region of positive
current in the measured probability Π(τ). It is possible then, that backflow causes
a time delay between the arrival of the wavepacket at x = 0 and its detection in a
measuring device.

Already it has been shown that for an idealised particle detection model that uses a
complex potential, the backflow effect has startling implications when considering the
concept of perfect absorption at the origin [10]. During an interval of backflow it is
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possible for a perfect absorber to emit probability. This is to compensate for the small
amount of probability that has already entered the detector volume before the period
of backflow, but has not been absorbed. The effect is only temporary however and no
particles are permanently reflected if we are to assume the detector behaves as a perfect
absorber. We also mention that at asymptotic distances from the source or interaction
region, the effect of backflow is negligible [9].

Yearsley et al [1] looked at how probability backflow is affected by a time-smeared
current. Their plot of the current for the backflow maximising state, compared with
the time-smeared current Eq.(6.8) for two values of V0, can be seen in Fig.(6.1).

Figure 6.1: A comparison of the backflow maximising current (solid line) with the
time-smeared current Eq.(6.8) for V0 = 0.5 (dashed line) and V0 = 0.1 (dotted line) [1].

There are no longer any periods of negativity due to the time-smearing of the cur-
rent. The behaviour at t = ±1 is now characterized by discontinuous changes in the
derivative of the time-smeared current rather than the distinctive singularity structure.
These discontinuities are possible signatures (in the measured probabilities) of the back-
flow effect.

6.4 Schrödinger Cat State

A Schrödinger cat state is a superposition of two maximally different quantum states.
For our purposes we are interested in a superposition of spatially separated coherent
states described by the wave function,

|ψcat〉 = a|α〉+ b| − α〉 a, b ∈ C (6.10)

where |α〉 is a coherent state which is specified by a single complex number α. Coher-
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ent states are minimum uncertainty states, and in the position representation can be
expressed as

ψα(x) = 〈x|α〉 = A exp

(
−
(√

mω

2~
x+ α

)2
)

(6.11)

where A is a normalisation constant given by,

A =
(mω
π~

) 1
4

exp

(
1

2
α(α− α∗)

)
(6.12)

The time dependence of the coherent state is obtained by acting with the time evolution
operator U(t) = exp(−iHt/~), and it follows that

U(t)|α〉 = |α(t)〉 = e−
i
2
ωt|αe−iωt〉 (6.13)

A coherent state remains coherent as time evolves. The time dependent wave function
of the cat state, expressed in the position representation, is now

ψcat(x, t) = aψα(x, t) + bψ−α(x, t) (6.14)

The state ψcat(x, t) is a superposition with arbitrary weights of two coherent states
symmetrically placed with respect to the origin. The preparation of cat states is chal-
lenging as they are very susceptible to decoherence, but states of this form have been
realised experimentally [45, 46]. Most notably, a cat state of the harmonic oscillator has
been created by preparing a superposition of two coherent state wavepackets of a single
trapped ion in one dimension [47, 48]. This approach enables the harmonic motion of
the trapped ion to be controlled to a high degree of accuracy, and because of the time
evolution of a coherent state, the separation of the superposition is preserved.

It is the motion of the ion in the trap that may lead to the observation of backflow.
For the effect to occur, one of the two components of the wave function must overtake
and interfere with the other. However, ψcat(x, t) is a symmetric state and will not dis-
play backflow. It is experimentally possible though, to manipulate ψcat(x, t) so that it
is no longer symmetric. This is achieved by applying a single pulse of an additional dc
electric field to displace the ion from the trap centre. The cat state will then be of the
form,

|ψcat〉 = a|α〉+ b|β〉 (6.15)

where α and β are real and non-negative, and this state will produce backflow. A plot
of the current Eq.(2.2), at x = 0, is shown in Fig.(6.2) and Fig.(6.3) for the following
parameters,

a =

√
3

4
, b =

√
1

4
, α = 1.5, β = 9, ω = 1 (6.16)

with ~ = 1 and m = 1. The parameters chosen were to illustrate the negativity of the
current and in principle are experimentally viable.
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Figure 6.2: Plot of J(0, t) for a wave function consisting of a superposition of two
coherent states, with the parameters specified in Eq.(6.16).
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Figure 6.3: Close up of Fig.(6.2). The current is clearly seen to be negative at several
times.

The current has two strong negative peaks for the time interval [0, π], best seen
in Fig.(6.3). A plot of the probability for remaining in x < 0 is shown in Fig.(6.4).
Like the example of a superposition of two Gaussian wavepackets in Sec.(4.3), backflow
occurs in several disjoint time intervals. The value of the flux during the largest period
of backflow is calculated to be,

F ≈ −0.0116 (6.17)
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which is around 30% of the theoretical maximum. The backflowing fraction of the
x-axis has the value,

Pback = 0.1404 (6.18)

Both the negative flux and Pback are larger for the cat state when compared with a
superposition of two Gaussians. This is encouraging for the experimental observation
of the effect, even though the amount of backflow is still significantly less than the
theoretical maximum.
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Figure 6.4: Plot of the probability for remaining in x < 0 as a function of time for the
Schrödinger cat state.
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Figure 6.5: Close up of Fig.(6.4). The probability is clearly seen to increase.
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It is possible to increase the amount of backflow by modifying the values of α and β.
However, a Schrödinger cat state has support on both positive and negative momentum
therefore it is necessary to confirm the occurrence of backflow is not the result of any
negative momenta in the wavepacket. A series of plots of the momentum distribution
of the cat state for various times during the interval, 0 ≤ t ≤ π, is shown in Fig.(6.6).
At t = 0.8, the cat state is almost entirely composed of positive momentum. During
a period of backflow (t = 1.6), the momentum distribution of |α〉 is centred around
p ≈ 2.1, and an estimate of the fraction of the wavepacket located in p < 0 shows ap-
proximately 0.1% of the wavepacket consists of negative momentum. This is negligible
and demonstrates that the negativity of the flux is due to the backflow effect.

Note that the Wigner function of a cat state displays Gaussian like probabilities
localised in two different regions of phase space plus a strong interference term which
takes negative values [49]. As discussed in Sec.(2.1), it is this negativity that is a nec-
essary condition for the negativity of the flux.

Figure 6.6: Plot of the momentum distribution of the Schrödinger cat state for various
times during the interval, 0 ≤ t ≤ π.

A method similar to that described in Sec.(6.2) could be used to detect backflow.
Position measurements on the ion must be performed with a temporal resolution that
is less than the period of the trap. Shining a laser on the ion at resonance will emit a
large number of photons that would indicate its position, however there are concerns
with this approach. A laser can impart more momentum to the ion which may disturb
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the harmonic motion and more importantly, any measurement that reveals the position
of the ion to within the uncertainty of its wave function will destroy the quantum
state. An indirect method could prove more fruitful, but precisely what this might
entail is unclear. It is important that any interaction with the state does not lead to
decoherence. The field of ion trap manipulation is now well established and one suspects
that the techniques required to detect backflow already exist. All that is needed is an
experimentalist with the expertise to finally realise this quantum effect.

The material presented in this section is in its infancy but does show promise.
Further work must establish the optimum values for α and β to maximise backflow but
also confirm that negative momentum is not responsible. It could be that experimental
limitations mean only a small range of values are accessible to α and β.
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7 Summary and Further Work

7.1 Summary

The aim of this report was to provide a detailed account of the quantum backflow
effect. In Chapter 2 it was shown that when the current at the origin J(0, t) < 0, the
probability of remaining in x < 0 can increase with time. To understand this behaviour
we developed the relationship between the Wigner function and the current. Negative
values of the Wigner function arise from interference between different portions of the
wavepacket and it is this negativity that is a necessary condition for the negativity of
the current. The backflow eigenvalue equation was set up and solved numerically to
find the most negative eigenvalue of the flux operator. This led to the appearance of the
dimensionless quantity cbm. The backflow maximising state was numerically computed
and a plot of the resulting wave function shown in momentum and configuration space.
A plot of the resulting current revealed a distinctive singularity structure at t = ±1.
The flux operator was shown to be linear bounded, self-adjoint and non-compact.

The spatial extent of backflow was explored in Chapter 3. A quantum inequality for
the current demonstrated that backflow is limited in space. The backflowing fraction
of the x-axis was characterised by the backflow probability Pback, which approaches its
maximal value of 1/2 when the component momenta in the wavepacket are strongly
correlated. The connection between backflow and superoscillations was explored. There
appeared to be striking similarities between the time evolution of fast superoscillations
and strong backflow.

In Chapter 4 the example of a superposition of two plane waves was used to illus-
trate the backflow effect. This demonstrated that negative values of the current can be
understood as an interference effect. It was also shown that the width of a region of
backflow decreases as the wavenumber k(x) becomes more negative. The current and
the flux were computed for a superposition of two Gaussian wavepackets. Although
experimentally realisable, this state displays only 16% of the maximum possible back-
flow, a very small amount. A normalisable state significant in the development of the
subject was studied and shown to display 11% of the theoretical maximum backflow.
A candidate analytic expression for the backflow maximising state was presented which
appeared to follow closely the numerical solution of Penz et al [8]. However a plot of the
current failed to match the distinctive singularity structure at t = ±1 which is perhaps
an important characteristic of the backflow maximising state.

In Chapter 5 we examined three different scenarios where the most negative eigen-
value −cbm, becomes dependent on certain physical parameters. The more realistic
measurement model of quasiprojectors restored the naive classical limit, and backflow
was seen to diminish when ~→ 0. In the relativistic case for particles governed by the
Dirac equation, the maximum amount of backflow ∆max depends on the dimensionless
combination mc2T/~. Backflow can occur in opposition to a constant force but the
effect gets smaller when the size of the force is increased.
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The experimental realisation of backflow was discussed in Chapter 6. A direct
method to measure backflow could in principle be done by making position measure-
ments on ensembles of single-particle systems. A complex potential model often used in
the arrival time problem could lead to the observation of backflow. If the arrival time
distribution Π(τ) can be determined, it is possible to extract the current by deconvo-
lution and then from this calculate the flux. Backflow was also noted to have certain
implications for the concept of perfect absorption. A Schrödinger cat state which is
experimentally realisable was shown to exhibit backflow. The scheme presented shows
promise but requires further work.

7.2 Open Questions and Further Work

Time Scale of Backflow

It is always possible to find a state which exhibits backflow for an arbitrarily long period
of time but this does not tell us about the ‘natural’ time scale for which this effect
takes place. The relationship established in Eq.(2.24) demonstrated that the current
can be arbitrarily negative if only for a sufficiently short time. Does the magnitude of
the negative current dictate the time scale on which backflow occurs? If not, is it some
property of the type of state that determines the duration of a period of backflow? These
questions reaffirm the need for experimental observation of the effect. If a successful
method to determine the flux was found, the amount of backflow for different states
could be measured and compared not only with each other, but also their own theoretical
maximum values. This would establish whether or not a state will always display the
same amount of backflow.

Analytic Calculation of the Eigenvalue Equation

Penz et al [8] questioned whether there really is a backflow eigenvalue, in the strict
mathematical sense, that −cbm is an approximation to. The analytic calculation of
−cbm and the analytic form of the backflow maximising state will no doubt be found
if there is a continued effort to do so. This optimism is confirmed by the progress
made in the recent work of Yearsley et al [1], who also speculate that perhaps the non-
commutativity of the operators θ(p̂) and θ(−x̂) will lead to an analytic calculation of
the quantity −cbm.

Eigenstates of the Flux Operator

The backflow maximising state is an eigenstate of the flux operator F̂ (t1, t2) with eigen-
value −cbm. Here is a quantum state that describes a non-relativistic free particle which
displays the maximum amount of backflow. How does one interpret the other eigenstates
of the flux operator though? Specifically what does it mean for the eigenstate which
has eigenvalue +1? A plot of this state in momentum space is shown in Fig.(7.1). It has
a slightly different form to the backflow maximising state Fig.(2.1). The behaviour at
large u is unclear because a momentum cut-off must be introduced to solve the backflow
eigenvalue equation numerically. It would appear that the state tends towards some
asymptotic form, however further investigation is needed.
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Figure 7.1: Plot of the eigenstate of the flux operator with eigenvalue +1 in momentum
space.

A plot of the current at the origin is shown in Fig.(7.2). There are large positive
values of J , but also short periods of negativity indicating that this eigenstate exhibits
backflow too. Since the flux of this state is +1, the probability for remaining in x < 0
rapidly decreases with all the probability crossing x = 0 in the time interval [−1, 1].
This suggests the eigenstate consists of a wavepacket with high velocity which crosses
the origin in its entirety during [−1, 1].
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Figure 7.2: Plot of J(0, t) for the eigenstate of the flux operator with eigenvalue +1.

It would be of great interest to look in more detail at the other eigenstates of the
flux operator. Not only would it help our interpretation of these states but it could well
provide clues to the analytic form of the backflow maximising state.
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